Adaptive Control Tutorial Advances In Design And Control

Fuzzy System Identification and Adaptive Control

A complete resource to Approximate Dynamic Programming (ADP), including on-line simulation code provides a tutorial that readers can use to start implementing the learning algorithms provided in the book. Includes ideas, directions, and recent results on current research issues and addresses applications where ADP has been successfully implemented. The contributors are leading researchers in the field.

Advances in Robot Control

At publication, The Control Handbook immediately became the definitive resource that engineers working with modern control systems required. Among its many accolades, that first edition was cited by the AAP as the Best Engineering Handbook of 1996. Now, 15 years later, William Levine has once again compiled the most comprehensive and authoritative resource on control engineering. He has fully reorganized the text to reflect the technical advances achieved since the last edition and has expanded its contents to include the multidisciplinary perspective that is making control engineering a critical component in so many fields. Now expanded from one to three volumes, The Control Handbook, Second Edition organizes cutting-edge contributions from more than 200 leading experts. The third volume, Control System Advanced Methods, includes design and analysis methods for MIMO linear and LTI systems, Kalman filters and observers, hybrid systems, and nonlinear systems. It also covers advanced considerations regarding — Stability Adaptive controls System identification Stochastic control Control of distributed parameter systems Networks and networked controls. As with the first edition, the new edition not only stands as a record of accomplishment in control engineering but provides researchers with the means to make further advances. Progressively organized, the first two volumes in the set include: Control System Fundamentals Control System Applications

L1 Adaptive Control Theory

Written in a self-contained tutorial fashion, this monograph successfully brings the latest theoretical advances in the design of robust adaptive systems to the realm of industrial applications. It provides a theoretical basis for verifying some of the reported industrial successes of existing adaptive control schemes and enables readers to synthesize adaptive versions of their own robust internal model...
Adaptive Control provides techniques for automatic, real-time adjustments in controller parameters with a view to achieving and/or maintaining a desirable level of system performance in the presence of unknown or variable process parameters. Many aspects of the field are dealt with in coherent and orderly fashion, starting with the problems posed by system uncertainties and moving on to the presentation of solutions and their practical significance. Within the general context of recent developments, the book looks at: • synthesis and analysis of parameter adaptation algorithms; • recursive plant-model identification in open and closed loop; • robust digital control for adaptive control; • direct and indirect adaptive control; and • practical aspects and applications. To reflect the importance of digital computers for the application of adaptive control techniques, discrete-time aspects are emphasized. To guide the reader, the book contains various applications of adaptive control techniques.

Handbook of Learning and Approximate Dynamic Programming

Exploring connections between adaptive control theory and practice, this book treats the techniques of linear quadratic optimal control and estimation (Kalman filtering), recursive identification, linear systems theory and robust arguments.

Feedback Control Theory

Control Applications of Adaptive covers the proceedings of the 197 Workshop on Applications of Adaptive Control, held in Yale University. This book is organized into five parts encompassing 18 chapters that summarize the potential application of adaptive control to many practical problems. Part I contains tutorials that bring together important results in two of the most studied approaches to adaptive control, namely, self-tuning regulators and model reference adaptive control (MRAC), with a particular emphasis on the importance of error models in the stability analysis of MRAC. Part II examines the algorithms used for adaptive signal processing, while Part III describes the types of power systems problems that could benefit from application of adaptive control and how to apply adaptive control algorithms for controlling large electric generators. Part IV highlights adaptive control in aircraft systems. This part also considers how adaptive control fell into disfavor in the flight control community, illustrating the existence of residual negative bias. The desirability of cost elimination of air data sensors in less-sophisticated flight control systems is also discussed. Part V addresses the application of process control to chemical processes and to electromechanical systems. This part also shows the robustness and superior tracking and regulation properties of model reference adaptive control applied to liquid level control. Discussion on various classes of model reference adaptive controllers in a common framework from the viewpoint of microcomputer implementation is also included. This book will be of value to control system theorists and practitioners.

Stochastic Systems

This book focuses on the applications of robust and adaptive control approaches to practical systems. The proposed control systems hold two important features: (1) The system is robust with the variation in plant parameters and disturbances (2) The system adapts to parametric uncertainties even in the unknown plant structure by self-training and self-estimating the unknown factors. The various kinds of robust adaptive controls represented in this book are composed of sliding mode control, model-reference adaptive control, gain-scheduling, H-infinity, model-predictive control, fuzzy logic, neural networks, machine learning, and so on. The control objects are very abundant, from cranes, aircrafts, and wind turbines to automobile, medical and sport machines, combustion engines, and electrical machines.
Adaptive Control Strategies for Industrial Use

New Trends in Observer-Based Control: A Practical Guide to Process and Engineering Applications presents a concise introduction to the latest advances in observer-based control design. The book gives a comprehensive tutorial on new trends in the design of observer-based controllers for which the separation principle is well established. It covers a wide range of applications, also including worked examples that make it ideal for both advanced courses and researchers starting work in the field. This book is also particularly suitable for engineers who want to quickly and efficiently enter the field. Presents a clear-and-concise introduction to the latest advances in observer-based control design Offers content on many facets of observer-based control design Discusses key applications in the fields of power systems, robotics and mechatronics, flight and automotive systems

Adaptive Robust Control Systems

Robust and Adaptive Control shows the reader how to produce consistent and accurate controllers that operate in the presence of uncertainties and unforeseen events. Driven by aerospace applications the focus of the book is primarily on continuous-dynamical systems. The text is a three-part treatment, beginning with robust and optimal linear control methods and moving on to a self-contained presentation of the design and analysis of model reference adaptive control (MRAC) for nonlinear uncertain dynamical systems. Recent extensions and modifications to MRAC design are included, as are guidelines for combining robust optimal and MRAC controllers. Features of the text include: case studies that demonstrate the benefits of robust and adaptive control for piloted, autonomous and experimental aerial platforms; detailed background material for each chapter to motivate theoretical developments; realistic examples and simulation data illustrating key features of the methods described; and problem solutions for instructors and MATLAB® code provided electronically. The theoretical content and practical applications reported address real-life aerospace problems, being based on numerous transitions of control-theoretic results into operational systems and airborne vehicles that are drawn from the authors’ extensive professional experience with The Boeing Company. The systems covered are challenging, often open-loop unstable, with uncertainties in their dynamics, and thus requiring both persistently reliable control and the ability to track commands either from a pilot or a guidance computer. Readers are assumed to have a basic understanding of root locus, Bode diagrams, and Nyquist plots, as well as linear algebra, ordinary differential equations, and the use of state-space methods in analysis and modeling of dynamical systems. Robust and Adaptive Control is intended to methodically teach senior undergraduate and graduate students how to construct stable and predictable control algorithms for realistic industrial applications. Practicing engineers and academic researchers will also find the book of great instructional value.

Control and Dynamic Systems V40: Advances in Robotic Systems Part 2 of 2

This volume surveys three decades of modern robot control theory and describes how the work of Suguru Arimoto shaped its development. Twelve survey articles written by experts associated with Suguru Arimoto at various stages in his career treat the subject comprehensively. This book provides an important reference for graduate students and researchers, as well as for mathematicians, engineers and scientists whose work involves robot control theory.

The Control Systems Handbook

This tutorial presents optomechanical modeling techniques to effectively design and analyze high-performance optical systems. It discusses thermal and structural modeling methods that use finite-element analysis to predict the integrity and performance of optical elements and optical support structures. Includes accompanying CD-ROM with examples.

Adaptive Control Systems
This book provides readers with a systematic and unified framework for identification and adaptive control of Takagi–Sugeno (T–S) fuzzy systems. Its design techniques help readers applying these powerful tools to solve challenging nonlinear control problems. The book embodies a systematic study of fuzzy system identification and control problems, using T–S fuzzy system tools for both function approximation and feedback control of nonlinear systems. Alongside this framework, the book also: introduces basic concepts of fuzzy sets, logic and inference system; discusses important properties of T–S fuzzy systems; develops offline and online identification algorithms for T–S fuzzy systems; investigates the various controller structures and corresponding design conditions for adaptive control of continuous-time T–S fuzzy systems; develops adaptive control algorithms for discrete-time input–output form T–S fuzzy systems with much relaxed design conditions, and discrete-time state-space T–S fuzzy systems; and designs stable parameter-adaptation algorithms for both linearly and nonlinearly parameterized T–S fuzzy systems. The authors address adaptive fault compensation problems for T–S fuzzy systems subject to actuator faults. They cover a broad spectrum of related technical topics and to develop a substantial set of adaptive nonlinear system control tools. Fuzzy System Identification and Adaptive Control helps engineers in the mechanical, electrical and aerospace fields, to solve complex control design problems. The book can be used as a reference for researchers and academics in nonlinear, intelligent, adaptive and fault-tolerant control.

Advances in Reinforcement Learning

In this work, the authors present a global perspective on the methods available for analysis and design of non-linear control systems and detail specific applications. They provide a tutorial exposition of the major non-linear systems analysis techniques followed by a discussion of available non-linear design methods.

Adaptive Control

Suitable for advanced undergraduates and graduate students, this overview introduces theoretical and practical aspects of adaptive control, with emphasis on deterministic and stochastic viewpoints. 1995 edition.

Artificial Higher Order Neural Networks for Computer Science and Engineering: Trends for Emerging Applications

This open access Brief introduces the basic principles of control theory in a concise self-study guide. It complements the classic texts by emphasizing the simple conceptual unity of the subject. A novice can quickly see how and why the different parts fit together. The concepts build slowly and naturally one after another, until the reader soon has a view of the whole. Each concept is illustrated by detailed examples and graphics. The full software code for each example is available, providing the basis for experimenting with various assumptions, learning how to write programs for control analysis, and setting the stage for future research projects. The topics focus on robustness, design trade-offs, and optimality. Most of the book develops classical linear theory. The last part of the book considers robustness with respect to nonlinearity and explicitly nonlinear extensions, as well as advanced topics such as adaptive control and model predictive control. New students, as well as scientists from other backgrounds who want a concise and easy-to-grasp coverage of control theory, will benefit from the emphasis on concepts and broad understanding of the various approaches.

Applied Control Systems Design

Presenting current trends in the development and applications of intelligent systems in engineering, this monograph focuses on recent research results in system identification and control. The recurrent neurofuzzy and the fuzzy cognitive network (FCN) models are presented. Both models are suitable for partially-known or unknown complex time-varying systems. Neurofuzzy Adaptive Control contains
rigorous proofs of its statements which result in concrete conclusions for the selection of the design parameters of the algorithms presented. The neurofuzzy model combines concepts from fuzzy systems and recurrent high-order neural networks to produce powerful system approximations that are used for adaptive control. The FCN model stems from fuzzy cognitive maps and uses the notion of “concepts” and their causal relationships to capture the behavior of complex systems. The book shows how, with the benefit of proper training algorithms, these models are potent system emulators suitable for use in engineering systems. All chapters are supported by illustrative simulation experiments, while separate chapters are devoted to the potential industrial applications of each model including projects in: • contemporary power generation; • process control and • conventional benchmarking problems. Researchers and graduate students working in adaptive estimation and intelligent control will find Neurofuzzy Adaptive Control of interest both for the currency of its models and because it demonstrates their relevance for real systems. The monograph also shows industrial engineers how to test intelligent adaptive control easily using proven theoretical results.

Advanced Autonomous Vehicle Design for Severe Environments

The objective of this workshop was to bring together engineers from industry and scientists from universities to focus attention on new developments and practical enhancements for using adaptive control in industry. The workshop provided a forum for a tutorial introduction to the state-of-the-art in adaptive control and helped focus attention on an in-depth view of the problems and needs of adaptive control engineers in industry. The volume includes papers concerned with recent theoretical advances in adaptive control, experimental application of adaptive control in industry and the role of filters in adaptive control.

Control Theory Tutorial

Presents the design, analysis, and application of a wide variety of algorithms that can be used to manage dynamical systems with unknown parameters.

Adaptive Control Tutorial

This book is a simple and didactic account of the developments and practical applications of predictive, adaptive predictive, and optimized adaptive control from a perspective of stability, including the latest methodology of adaptive predictive expert (ADEX) control. ADEX Optimized Adaptive Control Systems is divided into six parts, with exercises and real-time simulations provided for the reader as appropriate. The text begins with the conceptual and intuitive knowledge of the technology and derives the stability conditions to be verified by the driver block and the adaptive mechanism of the optimized adaptive controller to guaranty the desired control performance. The second and third parts present strategic considerations of predictive control and related adaptive systems necessary for the proper design of driver block and adaptive mechanism and thence their technical realization. The authors then proceed to detail the stability theory that supports predictive, adaptive predictive and optimized adaptive control methodologies. Benchmark applications of these methodologies (distillation column and pulp-factory bleaching plant) are treated next with a focus on practical implementation issues. The final part of the book describes ADEX platforms and illustrates their use in the design and implementation of optimized adaptive control systems to three different challenging-to-control industrial processes: waste-water treatment; sulfur recovery; and temperature control of superheated steam in coal-fired power generation. The presentation is completed by a number of appendices containing technical background associated with the main text including a manual for the ADEX COP platform developed by the first author to exploit the capabilities of adaptive predictive control in real plants. ADEX Optimized Adaptive Control Systems provides practicing process control engineers with a multivariable optimal control solution which is adaptive and resistant to perturbation and the effects of noise. Its pedagogical features also facilitate its use as a teaching tool for formal university and Internet-based open-education-type graduate courses in practical optimal adaptive control and for self-study.
Advances in Missile Guidance, Control, and Estimation

Applied Control System Design examines several methods for building up systems models based on real experimental data from typical industrial processes and incorporating system identification techniques. The text takes a comparative approach to the models derived in this way judging their suitability for use in different systems and under different operational circumstances. A broad spectrum of control methods including various forms of filtering, feedback and feedforward control is applied to the models and the guidelines derived from the closed-loop responses are then composed into a concrete self-tested recipe to serve as a check-list for industrial engineers or control designers. System identification and control design are given equal weight in model derivation and testing to reflect their equality of importance in the proper design and optimization of high-performance control systems. Readers’ assimilation of the material discussed is assisted by the provision of problems and examples. Most of these exercises use MATLAB® to make computation and visualization more straightforward. Applied Control System Design will be of interest to academic researchers for its comparison of different systems models and their response to different control methods and will assist graduate students in learning the practical necessities of advanced control system design. The consistent reference to real systems coupled with self-learning tools will assist control practitioners who wish to keep up to date with the latest control design ideas.

Adaptive Control of Mechanical Manipulators

This book presents a comprehensive overview of the recently developed L1 adaptive control theory, including detailed proofs of the main results. The key feature of the L1 adaptive control theory is the decoupling of adaptation from robustness. The architectures of L1 adaptive control theory have guaranteed transient performance and robustness in the presence of fast adaptation, without enforcing persistent excitation, applying gain-scheduling, or resorting to high-gain feedback.

Adaptive Control

The implementation of effective control systems can help to achieve a wide range of benefits, not least in terms of real cost-savings. Education plays a vital role in ensuring continued success and its importance is well recognized by IFAC with a specifically designated technical committee in this area. This invaluable publication brings together the results of international research and experience in the latest control education techniques, as presented at the most recent symposium. Information on course curricula is presented, as well as teachware, including software and laboratory experimental apparatus.

New Trends in Observer-based Control

Since its origins in the 1940s, the subject of decision making under uncertainty has grown into a diversified area with application in several branches of engineering and in those areas of the social sciences concerned with policy analysis and prescription. These approaches required a computing capacity too expensive for the time, until the ability to collect and process huge quantities of data engendered an explosion of work in the area. This book provides succinct and rigorous treatment of the foundations of stochastic control; a unified approach to filtering, estimation, prediction, and stochastic and adaptive control; and the conceptual framework necessary to understand current trends in stochastic control, data mining, machine learning, and robotics.

Advances in Control Education 1994

In the era of cyber-physical systems, the area of control of complex systems has grown to be one of the hardest in terms of algorithmic design techniques and analytical tools. The 23 chapters, written by international specialists in the field, cover a variety of interests within the broader field of learning, adaptation, optimization and networked control. The editors have grouped these into the following 5
sections: “Introduction and Background on Control Theory”, “Adaptive Control and Neuroscience”, “Adaptive Learning Algorithms”, “Cyber-Physical Systems and Cooperative Control”, “Applications”. The diversity of the research presented gives the reader a unique opportunity to explore a comprehensive overview of a field of great interest to control and system theorists. This book is intended for researchers and control engineers in machine learning, adaptive control, optimization and automatic control systems, including Electrical Engineers, Computer Science Engineers, Mechanical Engineers, Aerospace/Automotive Engineers, and Industrial Engineers. It could be used as a text or reference for advanced courses in complex control systems. • Collection of chapters from several well-known professors and researchers that will showcase their recent work • Presents different state-of-the-art control approaches and theory for complex systems • Gives algorithms that take into consideration the presence of modelling uncertainties, the unavailability of the model, the possibility of cooperative/non-cooperative goals and malicious attacks compromising the security of networked teams • Real system examples and figures throughout, make ideas concrete Includes chapters from several well-known professors and researchers that showcases their recent work Presents different state-of-the-art control approaches and theory for complex systems Explores the presence of modelling uncertainties, the unavailability of the model, the possibility of cooperative/non-cooperative goals, and malicious attacks compromising the security of networked teams Serves as a helpful reference for researchers and control engineers working with machine learning, adaptive control, and automatic control systems

Advances in Motion Sensing and Control for Robotic Applications

This textbook provides readers with a good working knowledge of adaptive control theory through applications. It is intended for students beginning masters or doctoral courses, and control practitioners wishing to get up to speed in the subject expeditiously. Readers are taught a wide variety of adaptive control techniques starting with simple methods and extending step-by-step to more complex ones. Stability proofs are provided for all adaptive control techniques without obfuscating reader understanding with excessive mathematics. The book begins with standard model-reference adaptive control (MRAC) for first-order, second-order, and multi-input, multi-output systems. Treatment of least-squares parameter estimation and its extension to MRAC follow, helping readers to gain a different perspective on MRAC. Function approximation with orthogonal polynomials and neural networks, and MRAC using neural networks are also covered. Robustness issues connected with MRAC are discussed, helping the student to appreciate potential pitfalls of the technique. This appreciation is encouraged by drawing parallels between various aspects of robustness and linear time-invariant systems wherever relevant. Following on from the robustness problems is material covering robust adaptive control including standard methods and detailed exposition of recent advances, in particular, the author’s work on optimal control modification. Interesting properties of the new method are illustrated in the design of adaptive systems to meet stability margins. This method has been successfully flight-tested on research aircraft, one of various flight-control applications detailed towards the end of the book along with a hybrid adaptive flight control architecture that combines direct MRAC and least-squares indirect adaptive control. In addition to the applications, understanding is encouraged by the use of end-of-chapter exercises and associated MATLAB® files. Readers will need no more than the standard mathematics for basic control theory such as differential equations and matrix algebra; the book covers the foundations of MRAC and the necessary mathematical preliminaries.

Applications of Adaptive Control

Adaptive control is no longer just an important theoretical field of study, but is also providing solutions to real-world problems. Adaptive techniques will transform the world of control. The leading world practitioners of adaptive control have contributed to this handbook which is the most important work yet in this field. Not only are techniques described in theory, but detailed control algorithms are given, making this a practical cookbook of adaptive control for both control professionals and practising engineers. The book presents the most advanced techniques and algorithms of adaptive control. These include various robust techniques, performance enhancement techniques, techniques with less a-priori
knowledge, nonlinear adaptive control techniques and intelligent adaptive techniques. Each technique described has been developed to provide a practical solution to a real-life problem. This volume will therefore not only advance the field of adaptive control as an area of study, but will also show how the potential of this technology can be realised and offer significant benefits. Practical cookbook of adaptive control Contains important research

Adaptive Control Strategies for Industrial Use

Stringent demands on modern guided weapon systems require new approaches to guidance, control, and estimation. There are requirements for pinpoint accuracy, low cost per round, easy upgrade paths, enhanced performance in counter-measure environments, and the ability to track low-observable targets. Advances in Missile Guidance, Control, and Estimation

L1 Adaptive Control Theory

Presented in a tutorial style, this comprehensive treatment unifies, simplifies, and explains most of the techniques for designing and analyzing adaptive control systems. Numerous examples clarify procedures and methods. 1995 edition.

Robust Adaptive Control

This book reports on advances in sensing, modeling and control methods for different robotic platforms such as multi-degree of freedom robotic arms, unmanned aerial vehicles and autonomous mobile platforms. Based on 2018 Symposium on Mechatronics, Robotics, and Control (SMTRC’18), held as part of the 2018 CSME International Congress, in York University, Toronto, Canada, the book covers a variety of topics, from filtering and state estimation to adaptive control of reconfigurable robots and more. Next-generation systems with advanced control, planning, perception and interaction capabilities will achieve functionalities far beyond today’s technology. Two key challenges remaining for advanced robot technologies are related to sensing and control in robotic systems. Advanced perception is needed to navigate changing environments. Adaptive and intelligent control systems must be developed to enable operation in unstructured and dynamic environments. The selected chapters in this book focus on both of the aforementioned areas and highlight the main trends and challenges in robot sensing and control. The first part of the book introduces chapters which focus on advanced perception and sensing for robotics applications. They include sensor filtering and state estimation for bipedal robots and motion capture systems analysis. The second part focuses on different modeling and control methods for robotic systems including flight control for UAVs, multi-variable robust control for modular and reconfigurable robotics and control for precision micromanipulation.

Adaptive Internal Model Control

Advances in Robotic Systems, Part 2 is the second of a companion set of two volumes on advances in robotic systems dynamics and control. This book comprises nine chapters, with the first focusing on kinesthetic feedback techniques in teleoperated systems. The succeeding chapters then delve into topics such as parallel algorithms and fault-tolerant reconfigurable architecture for robot kinematics and dynamics computations; trajectory planning for robot control; and a control systems perspective. Other chapters cover simplified techniques for adaptive control of robotic systems; theory and applications of configuration control for redundant manipulators; nonlinear feedback for force control of robot manipulators; systolic architectures for dynamic control of manipulators; inverse dynamics; and forward dynamics. This book will be of interest to practitioners in the fields of computer science, systems science, and mathematics.

System Identification and Adaptive Control

Reinforcement Learning (RL) is a very dynamic area in terms of theory and application. This book
brings together many different aspects of the current research on several fields associated to RL which has been growing rapidly, producing a wide variety of learning algorithms for different applications. Based on 24 Chapters, it covers a very broad variety of topics in RL and their application in autonomous systems. A set of chapters in this book provide a general overview of RL while other chapters focus mostly on the applications of RL paradigms: Game Theory, Multi-Agent Theory, Robotic, Networking Technologies, Vehicular Navigation, Medicine and Industrial Logistic.

Advances in Autonomous Robotics

An excellent introduction to feedback control system design, this book offers a theoretical approach that captures the essential issues and can be applied to a wide range of practical problems. Its explorations of recent developments in the field emphasize the relationship of new procedures to classical control theory, with a focus on single input and output systems that keeps concepts accessible to students with limited backgrounds. The text is geared toward a single-semester senior course or a graduate-level class for students of electrical engineering. The opening chapters constitute a basic treatment of feedback design. Topics include a detailed formulation of the control design program, the fundamental issue of performance/stability robustness tradeoff, and the graphical design technique of loopshaping. Subsequent chapters extend the discussion of the loopshaping technique and connect it with notions of optimality. Concluding chapters examine controller design via optimization, offering a mathematical approach that is useful for multivariable systems.

Model-Reference Adaptive Control

Integrated Optomechanical Analysis

Classical vehicle dynamics, which is the basis for manned ground vehicle design, has exhausted its potential for providing novel design concepts to a large degree. At the same time, unmanned ground vehicle (UGV) dynamics is still in its infancy and is currently being developed using general analytical dynamics principles with very little input from actual vehicle dynamics theory. This technical book presents outcomes from the NATO Advanced Study Institute (ASI) ‘Advanced Autonomous Vehicle Design for Severe Environments’, held in Coventry, UK, in July 2014. The ASI provided a platform for world class professionals to meet and discuss leading-edge research, engineering accomplishments and future trends in manned and unmanned ground vehicle dynamics, terrain mobility and energy efficiency. The outcomes of this collective effort serve as an analytical foundation for autonomous vehicle design. Topics covered include: historical aspects, pivotal accomplishments and the analysis of future trends in on- and off-road manned and unmanned vehicle dynamics; terramechanics, soil dynamic characteristics, uncertainties and stochastic characteristics of vehicle-environment interaction for agile vehicle dynamics modeling; new methods and techniques in on-line control and learning for vehicle autonomy; fundamentals of agility and severe environments; mechatronics and cyber-physics issues of agile vehicle dynamics to design for control, energy harvesting and cyber security; and case studies of agile and inverse vehicle dynamics and vehicle systems design, including optimisation of suspension and driveline systems. The book targets graduate students, who desire to advance further in leading-edge vehicle dynamics topics in manned and unmanned ground vehicles, PhD students continuing their research work and building advanced curricula in academia and industry, and researchers in government agencies and private companies.

Advances in Aerospace Guidance, Navigation and Control

"This book introduces and explains Higher Order Neural Networks (HONNs) to people working in the fields of computer science and computer engineering, and how to use HONNS in these areas"--Provided by publisher.

ADEX Optimized Adaptive Controllers and Systems
Written in a self-contained tutorial fashion, this monograph successfully brings the latest theoretical advances in the design of robust adaptive systems to the realm of industrial applications. It provides a theoretical basis for verifying some of the reported industrial successes of existing adaptive control schemes and enables readers to synthesize adaptive versions of their own robust internal model control schemes.

Robust and Adaptive Control

Contains results not yet published in technical journals and conference proceedings.

Applied Nonlinear Control

Following the successful 1st CEAS (Council of European Aerospace Societies) Specialist Conference on Guidance, Navigation and Control (CEAS EuroGNC) held in Munich, Germany in 2011, Delft University of Technology happily accepted the invitation of organizing the 2nd CEAS EuroGNC in Delft, The Netherlands in 2013. The goal of the conference is to promote new advances in aerospace GNC theory and technologies for enhancing safety, survivability, efficiency, performance, autonomy and intelligence of aerospace systems using on-board sensing, computing and systems. A great push for new developments in GNC are the ever higher safety and sustainability requirements in aviation. Impressive progress was made in new research fields such as sensor and actuator fault detection and diagnosis, reconfigurable and fault tolerant flight control, online safe flight envelop prediction and protection, online global aerodynamic model identification, online global optimization and flight upset recovery. All of these challenges depend on new online solutions from on-board computing systems. Scientists and engineers in GNC have been developing model based, sensor based as well as knowledge based approaches aiming for highly robust, adaptive, nonlinear, intelligent and autonomous GNC systems. Although the papers presented at the conference and selected in this book could not possibly cover all of the present challenges in the GNC field, many of them have indeed been addressed and a wealth of new ideas, solutions and results were proposed and presented. For the 2nd CEAS Specialist Conference on Guidance, Navigation and Control the International Program Committee conducted a formal review process. Each paper was reviewed in compliance with good journal practice by at least two independent and anonymous reviewers. The papers published in this book were selected from the conference proceedings based on the results and recommendations from the reviewers.

Adaptive Internal Model Control

The objective of this workshop was to bring together engineers from industry and scientists from universities to focus attention on new developments and practical enhancements for using adaptive control in industry. The workshop provided a forum for a tutorial introduction to the state-of-the-art in adaptive control and helped focus attention on an in-depth view of the problems and needs of adaptive control engineers in industry. The volume includes papers concerned with recent theoretical advances in adaptive control, experimental application of adaptive control in industry and the role of filters in adaptive control.

Control of Complex Systems

This book constitutes the refereed proceedings of the 13th Conference on Towards Autonomous Robotic Systems, TAROS 2012 and the 15th Robot World Congress, FIRA 2012, held as joint conference in Bristol, UK, in August 2012. The 36 revised full papers presented together with 25 extended abstracts were carefully reviewed and selected from 89 submissions. The papers cover various topics in the field of autonomous robotics.